If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2-10t-10=0
a = 1; b = -10; c = -10;
Δ = b2-4ac
Δ = -102-4·1·(-10)
Δ = 140
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{140}=\sqrt{4*35}=\sqrt{4}*\sqrt{35}=2\sqrt{35}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{35}}{2*1}=\frac{10-2\sqrt{35}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{35}}{2*1}=\frac{10+2\sqrt{35}}{2} $
| m÷4-4.6=-3.1 | | 3.7=6*x | | x/35=48 | | 8y+8=6y+2 | | a÷2.4-5=2.4 | | 1.6952+x=2.0 | | 54x^2-15x-2500=0 | | 5x-40=-( | | 10-10x10+10=80 | | (x-5)+x+((x-5)/2)=100 | | 8x^2-0,32=0 | | y/2+14=7 | | 1/x+1/15-x=3/10 | | 4b2+-20b+175=0 | | 39c-78=33c | | 5x-5=2(x+1)=3x-7 | | 10a+-5(a-5)=110 | | 4a+(8a-43)=35 | | 2-7y-3=0 | | 189=-6x=3(-7x-18) | | 2y=36-2y | | −66=6(x−9) | | 1*5(10)=x | | P=4x+12 | | 15/8+x=2 | | 7/3x-4/9=-5/6 | | 1/3x-1/4x+1=0 | | 2y+4y=2y+3y | | x+(20/6)=(1/3)x | | 3x^2+6x-1320=0 | | -4x2+16x-16=0 | | 2x2-x+10=0 |